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Abstract

Simply supported conical shells loaded by the central rigid boss with vertical load are considered. The thickness
of the shell wall is assumed to be piece-wise constant with a ®nite number of jumps. The minimum weight design of

the shell is established under the condition that the load carrying capacity of the shell is given. The shell material is
assumed to be an ideal rigid-plastic one obeying the generalized diamond yield condition and associated ¯ow
law. # 2000 Elsevier Science Ltd. All rights reserved.

1. Introduction

Conical shells have many attractive applications in engineering. Thin-walled conical shells are used
not only as nozzles for pressure vessels but as the substantial parts of di�erent machines and structures
in mining, agriculture and elsewhere.

Limit analysis of conical shells subjected to lateral distributed loading has been investigated by Hodge
(1963), Kuech and Lee (1965) and others in the case of a Tresca material. The shells subjected to
uniformly distributed normal pressure and edge tension were considered by Hodge and
Lakshmikantham (1963).

The collapse loads for rigid-plastic conical shells loaded by a central boss have been de®ned under
di�erent assumptions by Hodge (1963), Onat (1960), Lance and Onat (1963), Lance and Lee (1969) and
Hodge and Deruntz (1964) assuming the material obeys Tresca's yield condition.

In the present paper, following the variational approach by Lellep (1991), a minimum weight design
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technique is developed for conical shells loaded by the central rigid boss. The shell wall is assumed to be
of piece-wise constant thickness.

In the case of a shell made of an elastic material, any sudden discontinuity of wall thickness
will result in some form of stress concentration. However, in this paper, it is assumed that the
material is an ideal rigid-plastic material. As was shown in early works by Sheu and Prager (1969)
and also by Lamblin et al. (1985), when considering axisymmetric plates of piece-wise constant
thickness, no stress concentration will occur in the case of pure plastic deformations. Therefore,
the phenomenon of stress concentration will not be considered in the current paper.

The material of the shell is assumed to obey the Tresca yield condition and associated ¯ow rule.
The yield surface in the space of generalized stresses corresponding to the original Tresca condition is

presented in the form of generalized diamond yield conditions suggested by Jones and Ich (1972).

Nomenclature

P vertical load
a, R radii of the shell
h thickness of the shell
hj, aj design parameters
r current radius
V material volume of the shell
N1, N2 membrane forces
M1, M2 bending moments
_U, _W displacement rates

_E1, _E2 strain rates
_k1, _k2 curvature rates
j angle of the slope
aj, gj dimensionless parameters
u, w non-dimensional displacement rates
n1,2, m1,2 non-dimensional stress resultants
R, a non-dimensional radii
q non-dimensional load parameter
k geometrical parameter
M�, N� limit moment and limit force
h� thickness of the reference shell
s0 yield stress
v non-dimensional volume
q0 load carrying capacity
n the number of jumps in the thickness
lj Lagrangian multipliers
V� material volume of the reference shell
e coe�cient of economy
Dj an interval
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2. Formulation of the problem and basic equations

Let us consider a conical shell simply supported at the outer edge of radius R and loaded by the
central boss with vertical load P (Fig. 1). It is assumed that the central boss with radius a > R/2 is
absolutely rigid and the shell is clamped to the boss at the inner edge of the shell with radius a.

Assume that the thickness of the shell is piece-wise constant, e.g.,

h � hj, r 2 �aj,aj�1�, �1�

where j = 0,..., n and a0=a, an + 1=R. Here, the quantities hj ( j = 0,..., n ) and aj ( j = 1,..., n ) are
considered as unknown constants. We are looking for the design of the shell for which the weight (or
material volume) attains the minimal value for given load carrying capacity. The material volume of the
shell wall with a given thickness Eq. (1) can be presented as

V �
Xn
j�0

hj

�
a2j�1 ÿ a2j

�
� p

cosj
: �2�

Here, j stands for the angle of inclination of a generator of the shell.
The equilibrium equations for a shell element have the form (see Hodge, 1963)

d

dr
�rN1� ÿN2 � 0

d

dr
�rM1� ÿM2 ÿ rN1

sinj
cos2j

� P

2pcos2j
� 0, �3�

where N1, N2 are the membrane forces and M1, M2 the principal moments, respectively.
Let _W and _U be the displacement rates in the transversal and tangential directions, respectively.

Strain and curvature rates for conical shells can be presented as

_E1 � d _U

dr
cosj,

_k1 � ÿh
4

d 2 _W

dr2
� cos2j,

_E2 � 1

r
� _Ucosj� _Wsinj�

Fig. 1. Conical shell loaded by the central boss.
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_k2 � ÿ h

4r

d _W

dr
� cos2j: �4�

The material of the shell is assumed to be an ideal rigid-plastic one obeying Tresca's yield condition
and associated ¯ow law. The yield surface in the four-dimensional space of stress resultants is of quite
complex form, even in the case of Tresca's yield condition. A series of di�erent simpli®cations of the
exact yield surface have been developed by Hodge (1963). It was shown by Jones and Ich (1972) that the
generalized diamond yield condition leads to predictions of the load carrying capacity of axisymmetric
shells which are close to the exact results. The generalized diamond yield condition will be used in the
present paper (Fig. 2).

It appears to be convenient to carry out the analysis in terms of dimensionless quantities de®ned by

R � r

R
,

aj � aj
R
,

gj �
hj
h�

,

w � W

R
,

u � U

R
,

n1,2 � N1,2

N�
,

m1,2 � M1,2

M�
,

k � M�
RN�

� cos2j

sin2j
,

Fig. 2. Generalized diamond yield condition.
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q � P

2pRN�sinj
ÿ M�cos2j

RN�sinj

a � a

R
: �5�

Here, M� and N� stand for the limit moment and limit force, respectively, for a shell of thickness h�.
Thus, M� � s0h2�=4, N�=s0h�, s0 being the yield stress of the shell material.

Making use of the dimensionless variables Eq. (5), the cost criterion Eq. (2) can be presented as

v �
Xn
j�0

gj
�
a2j�1 ÿ a2j

�
, �6�

whereas the equilibrium equations Eq. (3) take the form

�Rn1� 0 ÿ n2 � 0

k
��Rm1� 0 ÿm2 � 1

�ÿ Rn1 � q � 0: �7�
Here, primes denote the di�erentiation with respect to R and v=V cos j/(ph�R

2).
The statical boundary conditions are

m1�a� � g20,

m1�1� � 0

n1�1� � 0, �8�
since a hinge circle is assumed to be located at the internal edge of the shell.

3. The shell of constant thickness

Consider ®rst the case when h=h�, where h�=const. Assumptions about statical admissibility of the
stress ®eld lead to the stress regime, AB and D1A1 (Fig. 2). Prompted by this yield regime, one can state
that

m2 � 1ÿm1

n2 � ÿ1� n1: �9�
Substituting Eq. (9) in Eq. (7) after integration and taking Eq. (8) into account, one has

n1 � ÿ ln R

m1 � q

2k

�
1

R2
ÿ 1

�
ÿ R ln R

3k
� 1

9k

�
Rÿ 1

R2

�
: �10�

Taking m1(a )=1 in Eq. (10) leads to the limit load,
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q0 � 2

9�1ÿ a2� �1� 9ka2 � a3�3 ln aÿ 1��: �11�

It can be seen from Fig. 2 that the associated ¯ow law states that

_E1 � ÿ_E2

_k1 � _k2: �12�
It immediately follows from Eqs. (12) and (3) that

_w � c ln R

_u � c tan j
�
1ÿ ln R� a

R
�ln aÿ 1�

�
, �13�

where the boundary conditions _w�1� � 0 and _u�a� � 0 are taken into account.

4. Conical shell of piece-wise constant thickness

It might be expected that the yield regime, ABÿD1A1, takes place in each segment of the shell as in
the previous case. Let g=gj for R $Dj, where Dj=(aj,aj + 1) for j=0,..., n. Thus,

n2 � n1 ÿ gj �14�

and

m2 � g2j ÿm1 �15�

for R $Dj ( j=0,..., n ).
Eqs. (14) and (7) easily give

n1 � ÿgj ln R� cj �16�

for R $ Dj ( j = 0,..., n ). Arbitrary constants, cj, can be de®ned making use of Eq. (8) and continuity of
the membrane force n1 at R=aj ( j=1,..., n ). This leads to the relations

n1 � ÿgj ln R�
Xn
i�j�1
�giÿ1 ÿ gi �ln ai �17�

for R $Dj j=0,..., nÿ 1 and

n1 � ÿgn ln R �18�
for R $Dn.

Inserting Eqs. (15), (17) and (18) in the second equation in Eq. (7), one obtains

m 01 �
2

R
m1 � 1

R

�
g2j ÿ 1ÿ q

k

�
� 1

k

"
ÿ gj ln R�

Xn
i�j�1
�giÿ1 ÿ gi �ln ai

#
�19�
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for R $Dj ( j=0,..., nÿ 1) and

m 01 �
2

R
m1 � 1

R

�
g2n ÿ 1ÿ q

k

�
ÿ gn

k
ln R �20�

for R $Dn.
Integrating Eqs. (19) and (20) leads to the bending moment distribution:

m1 � 1

2

�
g2j ÿ 1ÿ q

k

�
ÿ Rgj

9k
�3 ln Rÿ 1� � cj

R2
� R

3k

Xn
i�j�1
�giÿ1 ÿ gi �ln ai �21�

for R $Dj ( j=0,..., nÿ 1) and

m1 � 1

2

�
g2n ÿ 1ÿ q

k

�
ÿ gnR

9k
�3 ln Rÿ 1� � cn

R2
�22�

for R $Dn.
For determination of the constants of integration, c0,..., cn, one can use the boundary condition,

m1(1)=0 and continuity requirements imposed on the bending moment m1 at R=ai (i = 1,..., n ). Thus,
according to Eqs. (8), (21) and (22), one has

cj �
Xn
i�j�1

�
a2i
2

ÿ
g2i ÿ g2iÿ1

�� a3i
9k
�gi ÿ giÿ1�

�
� 1

2

�
1� q

k
ÿ g2n

�
ÿ gn

9k
�23�

for j=0,..., nÿ 1 and

cn � 1

2

�
1� q

k
ÿ g2n

�
ÿ gn

9k
: �24�

Finally, satisfying the boundary requirement at the internal edge, m1�a� � g20, making use of Eqs. (21)
and (23), one obtains

ÿ 1

2

�
g20 � 1� q

k

�
ÿ ag0

9k
�3 ln aÿ 1� � a

3k

Xn
i�1
�giÿ1 ÿ gi �ln ai � 1

a2
Xn
i�1

�
a2i
2

ÿ
g2i ÿ g2iÿ1

�
� a3i

9k
�gi ÿ giÿ1�

�
� 1

2a2

�
1� q

k
ÿ g2n

�
ÿ gn

9ka2
� 0:

From Eq. (25), it immediately follows that the load carrying capacity of the shell of piece-wise
constant thickness can be presented as

q � ÿk� k

1ÿ a2
ÿ
g20a

2 � g2n
�� 4gn

9�1ÿ a2� �
2ka2

a2 ÿ 1
ÿ
(
ÿ ag0

9k
�3 ln aÿ 1� � a

3k

Xn
i�1
�giÿ1 ÿ gi �ln ai

�
Xn
i�1

�
a2i
2
�gi ÿ giÿ1� �

a3i
9k
�gi ÿ giÿ1�

�)
ÿ 2gn

9�a2 ÿ 1� , �26�

provided no plastic hinges occur at the cross-sections, R=ai (i=1,..., n ), where the thickness has jumps.
The stress distribution established above must be statically admissible. Therefore, the solution (Eqs.

(14) and (26)) has to satisfy the requirements
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0Rn1Rgj

and

0Rm1Rg2j

for R $Dj ( j=0,..., n ).
Evidently, the most dangereous cross-sections are at R=aj. Thus, one has to check if n1(aj )R gj and

m1�aj �Rg2j �27�

for j=1,..., n.
Introducing new variables yj ( j= 1,..., n ), one can present the inequalities of Eq. (27) in the form of

equalities

m1�aj � ÿ g2j � y2j � 0 �28�

for j=1,..., n. Making use of Eqs. (22) and (23), one can put Eq. (28) into the form

1

2

�
g2n ÿ 1ÿ q

k

�
ÿ gjaj

9k
�3 ln aj ÿ 1� � 1

a2j

Xn
i�j�1

�
a2i
2

ÿ
g2i ÿ g2iÿ1

�� a3i
9k
�gi ÿ giÿ1�

�

� 1

2a2j

�
1� q

k
ÿ g2n

�
ÿ 1

9ka2j
gn ÿ g2j � y2j � 0

for j=1,..., n.
In order to de®ne the minimum of the cost function Eq. (6) subjected to the constraints (Eqs. (26)

and (29)), let us introduce an extended Lagrangian function:

I �
Xn
j�0

gj
�
a2j�1 ÿ a2j

�
� l0

8<:ÿ k� k

1ÿ a2
� 4gn

9�1ÿ a2� �
2ka2

a2 ÿ 1

24ÿ ag0
9k
�3 ln aÿ 1�

� 3a
k

Xn
j�1
�gjÿ1 ÿ gj �ln aj �

Xn
j�1

�
a2j
2
�gj ÿ gjÿ1� �

a3j
9k
�gj ÿ gjÿ1�

�35ÿ q

9=;
�
Xn
j�1

lj

(
1

2

�
g2n ÿ 1ÿ q

k

�
ÿ gjaj

9k
�3 ln aj ÿ 1� � 1

2a2j

�
1� q

k
ÿ g2n

�
ÿ gn

9ka2j
� 1

a2j

Xn
i�j�1

�
a2i
2

ÿ
g2i ÿ g2iÿ1

�
� a3i

9k
�gi ÿ giÿ1�

�
ÿ g2j � y2j

)
, �30�

where l0,..., ln stand for Lagrangian multipliers.
The necessary conditions of the constrained minimum of the cost function Eq. (6) may be presented

according to Eq. (30) as
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2aj�gjÿ1 ÿ gj � �
2ka2

a2 ÿ 1
l0

"
3a
k
�gjÿ1 ÿ gj � �

1

aj
� aj�gj ÿ gjÿ1� �

a2j
3k
�gj ÿ gjÿ1�

#
� lj

(
ÿ gj

9k
�3 ln aj ÿ 1� 3�

ÿ 1

a3j

�
1� q

k
ÿ g2n

�
� 2gn

9ka3j
ÿ 2

a3j

Xn
i�j�1

�
a2i
2

ÿ
g2i ÿ g2iÿ1

�� a3i
9k
�gi ÿ giÿ1�

�)
� 0

l0yj � 0 �31�
for j=1,..., n and

a2j�1 ÿ a2j �
2ka2

a2 ÿ 1
l0

�
3a
k
�ÿln aj � ln aj�1� � 1

2

�
a2j ÿ a2j�1

�
� 1

9k

�
a3j ÿ a3j�1

��
lj

(
ÿ aj

9k
�3 ln aj ÿ 1�

� 1

a2j

�
ÿ a2j�1gj ÿ

a3j�1
9k

�)
� 0

for j=1,..., nÿ 1, as well as

a21 ÿ a2 � 2l0ka2

a2 ÿ 1

�
ÿ a

9k
�3 ln aÿ 1� � 3a

k
ln a1 ÿ a21

2
ÿ a31

9k

�
� 0

1ÿ a2n � l0

(
4

9�1ÿ a2� �
2ka2

a2 ÿ 1

�
3a
k
�ÿln an� � a2n

2
� a3n

9k

�)
� ln

(
ÿ gn ÿ

an
9k
�3 ln an ÿ 1� ÿ 1

a2n
gn

ÿ 1

9ka2n
� 1

a2n

�
a2ngn �

a3n
9k

�)
� 0,

corresponding to j=0 and j=n, respectively.
It follows from the second equation in Eq. (31) that lj=0, if yj$0 and yj=0, if lj$0. Thus lj=0 if

m1�aj � < g2j : However, it is reasonable to assume that the material of the shell is utilized in the most
e�cient manner if the cross-sections where the thickness varies rapidly are stressed maximally, e.g.
m1�aj � � g2j :

In this case, design parameters can be de®ned from Eqs. (31)±(33), making use of Eqs. (16) and (19).
Note that these systems of equations include 3n + 2 equations, whereas the number of unknowns
(lj,aj,gj ) is equal to 3n+2, as well.

The set of equations (Eqs. (26) and (29), Eqs. (31)±(33)) has been solved numerically by making use
of the Newton±Raphson method.

5. Numerical results

The results of the calculations are presented in Figs. 3±6 and Tables 1±3. The load carrying capacity
of a conical shell loaded by the central rigid boss is depicted in Fig. 3. The shell is simply supported at
the outer edge, whereas the thickness of the shell is constant. The curves labeled as 1, 2, 3 and 4
correspond to k = 0.1; k = 0.3; k = 0.9 and k = 1.5, respectively. It can be seen from Fig. 3 that the
greater the parameter k, the greater the limit load corresponding to the same value of internal radius.

On the other hand, for a ®xed value of the shell parameter k, the load carrying capacity increases
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with increasing internal radius of the shell. However, a rapid increase takes place when a/R tends to
unity.

Numerical results have been obtained for shells with two and three jumps in the thickness. In Figs. 4
and 5 are presented the distributions of the membrane force and the bending moment, respectively, for
the shell with three di�erent thicknesses. The bending moment is computed with respect to the middle
surface of the shell. The solid lines in Figs. 4 and 5 correspond to the shell with piece-wise constant
thickness, whereas the dashed lines are associated with the reference shell of constant thickness. The
curves labeled as 1 and 2 correspond to the cases k= 0.3 and k= 0.9, respectively, in Figs. 4 and 5. It
can be seen from Fig. 4 that the membrane force corresponding to the optimized shell is smaller than
that corresponding to the shell of constant thickness.

However, the principal bending moment is smaller in the case of the shell of constant thickness (Fig.
5). The stress distributions depend relatively weakly on the values of the geometrical parameter k.

The economy of the optimal design established could be assessed by the ratio e=V/V� where V is the
optimal material volume of the shell wall. Here, V� stands for the corresponding material volume of the
reference shell of constant thickness. Evidently,

Fig. 3. Load carrying capacity vs. internal radius.

Fig. 4. Membrane force distribution along the shell generator.
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V � ph�R2

cos j

�
g0
ÿ
a21 ÿ a2

�� g1
ÿ
a22 ÿ a21

�� g2
ÿ
1ÿ a22

�� �34�

in the case of two jumps in the thickness. Similarily, in the case of the reference shell of constant
thickness,

V� � ph�R2

cos j
�1ÿ a2 �: �35�

The values of the coe�cient of economy, calculated with the aid of Eqs. (34) and (35), are
accommodated in the last columns of Tables 1 and 2.

The data presented in Tables 1 and 2 correspond to the shell with two jumps in the thickness. Table 1
corresponds to the shell with k=0.3, whereas Table 2 is associated with the case when k=0.9.

Fig. 5. Bending moment distribution along the shell.

Fig. 6. Lower bound on the limit load as a function of internal radius.

J. Lellep, E. Puman / International Journal of Solids and Structures 37 (2000) 2695±2708 2705



It can be seen from Tables 1 and 2 that the eventual material saving depends on the radius of the
central rigid boss. It is somewhat surprising that the greater the internal radius, the greater the material
saving. For instance, in the case that k = 0.3 and a/R = 0.95, one can save more than 20% of the
material when utilizing the shell of piece-wise constant thickness with three di�erent thicknesses.
Calculations carried out show that in the case of the shell with two di�erent thicknesses, the eventual
material saving is about 14.5%, as shown by the authors (Lellep and Puman, 1994). However, if a/R=
0.55, then the corresponding percentages are 14% and 10.4%, respectively.

It appears that a simple lower bound to the load carrying capacity can be obtained when taking
n1=n2=0 and making use of the same yield regime on the plane of bending moments. Corresponding
results are presented in Table 3. It can be seen from Tables 1±3 that the values of the design parameters
are quite close to each other despite the fact that corresponding solutions have been obtained under
di�erent assumptions.

Note that the validity of the exact solution (as well as the approximate one) is restricted by statical
constraints 0 R n1 R gj; 0Rm1Rg2j for R $ Dj. Calculations carried out showed that these inequalities are
met, if a>R/2. However, the lower bound solution is valid for each value of the internal radius a.

Table 1

Optimal designs for k=0.3

a q a1 a2 g0 g1 g2 e

0.55 0.431 0.710 0.869 1.178 0.888 0.568 0.860

0.65 0.582 0.778 0.900 1.121 0.850 0.548 0.836

0.75 0.880 0.843 0.929 1.073 0.820 0.533 0.816

0.85 1.631 0.907 0.958 1.036 0.798 0.523 0.802

0.95 5.578 0.969 0.986 1.009 0.785 0.520 0.796

Table 2

Optimal designs for k=0.9

a q a1 a2 g0 g1 g2 e

0.55 0.951 0.709 0.869 1.162 0.850 0.531 0.828

0.65 1.459 0.777 0.899 1.107 0.825 0.524 0.813

0.75 2.423 0.842 0.929 1.065 0.806 0.520 0.803

0.85 4.756 0.907 0.958 1.033 0.792 0.518 0.797

0.95 16.686 0.969 0.986 1.009 0.785 0.520 0.795

Table 3

Lower-bound solution

a q/k a1 a2 g0 g1 g2 e

0.55 0.867 0.709 0.869 1.150 0.828 0.510 0.809

0.65 1.463 0.776 0.899 1.098 0.811 0.511 0.801

0.75 2.571 0.842 0.929 1.060 0.798 0.513 0.797

0.85 5.207 0.906 0.958 1.031 0.790 0.516 0.795

0.95 18.513 0.969 0.986 1.009 0.784 0.519 0.771
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The lower bound of the load carrying capacity is presented in Fig. 6 (dashed line). The curves 1, 2, 3
and 4 present the exact solutions in the cases k = 0.1; k = 0.3; k = 0.9 and k = 1.5, respectively. It is
worthy of note that the curves corresponding to the exact solution tend uniformly to the lower bound
solution (dashed line) if the parameter k increases.

The dot±dashed line in Fig. 6 is associated with the lower bound solution in the case of generalized
square yield condition. It is somewhat surprising that the results are quite close to each other.

6. Concluding remarks

A minimum weight design technique has been developed for conical shells of piece-wise constant
thickness. The shells under consideration are loaded by the rigid central boss, whereas the material of
the shell wall is considered to be an ideal rigid-plastic material obeying the generalized diamond yield
condition suggested by Jones and Ich (1972). Numerical results have been presented for the shells with 2
and 3 di�erent thicknesses.

A simple lower bound technique was used to predict the limit load and design parameters of the shell.
Numerical analysis showed that the results obtained by di�erent methods are surprisingly close to each
other.

It was established that the greater part of the eventual material saving can be achieved when using a
shell with two di�erent thicknesses (with one step in the thickness). However, when using a shell with
two steps in the thickness, remarkable additional saving can be obtained. For instance, in the case k=
0.3 and a= 0.55R, the design with one step gives an approximately 10% material saving in comparison
to the shell of constant thickness. The use of the design with two steps admits to get 4% of additional
economy. When adding the number of steps, the increase in the material saving is less remarkable. It is
clear that in the limit case when n tends to in®nity, the solution for the shell with piece-wise constant
thickness tends to that corresponding to the functionally graded thickness. However, the determination
of the optimal solution for the shell with continuously varying thickness will be a task for future work.
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